
4 Data Mining

4.1 Motivation

In recent years, researchers of different fields have identified a phenomenon
that has been coined as information tsunami or data tsunami – we live in a
world where the capacity of producing and storing data is increasing daily at
a very fast pace, however, our ability, as human beings, to understand such
an overwhelming amount of data has not grown at the same rate. In order to
deal with this problem, we undoubtedly need new technologies to unite the
seemingly conflicting requirements of scalability and usability in making sense
of the data.

In the last decades, several analysis methods have been developed which were Humans are required in
the data analysis processpurely automatic or purely visual, but to deal with the complexity of the

problem space, humans need to be included at an early stage of the data analysis
process[66]. We will now consider two examples of particularly complex
problems that affect us: understanding the function of genes (e.g., how can
devastating diseases be cured), and understanding earth dynamics (e.g., how
can natural disasters be predicted).

The 21st century has witnessed rapid development within the field of ge-
nomics. Initiatives such as the Human Genome Project and similar projects for
other organisms, have begun to establish the genetic structure by identifying
and locating genes in DNA sequences. Although far from perfect, these
sequence-to-gene mappings will dramatically increase our understanding of
genomics.

At the same time, the world has been affected by some of the most catastrophic
natural disasters in recent history. Some of these are of geologic origin, such
as the recent L’Aquila earthquake (2009) or the Sumatra-Andaman earthquake
(2004), which triggered the single worst tsunami in history; the majority are
related to climatic dynamics. For example, Hurricane Katrina (2005), one of
the costliest and deadliest hurricanes in American history; or El Niño (El Niño
Southern Oscillation, ENSO), whose erratic periodicity cost hundreds of lives
and caused billions in damage worldwide, partly through flooding in South
America and partly through failed harvests in South East Asia. Natural and New tools and

methodologies are
necessary to help experts
extract relevant
information

man-made catastrophes, coupled with increased security needs have triggered
the improvement of monitoring systems (e.g., the Global Monitoring for
Environment and Security, GMES1), capable of compiling data gathered from
different sources (on the ground, from the depths of the oceans, by aircraft
or balloon, or by satellites) and assembling them into usable, compatible and
comparable information services.

1http://ec.europa.eu/gmes/
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Figure 4.1: Comparing traditional data mining (top) and information visualisa-
tion (bottom) analytic processes[14]

Computers have played a key role in improving data acquisition methods thus
providing us with the necessary depth of information to diagnose and prevent
both diseases and natural disasters. Experts are required to assess current data
sources and make predictions. Although massive amounts of data are available,
it is imperative that new tools and new methodologies are developed to help
these experts extract the relevant information.

Knowledge discovery and data mining (KDD) is about semi or fully automated
analysis of massive datasets and is therefore central to the problems at hand.
Such automatic analysis methods are part of a discipline with a long tradition
and solid, theoretical foundations. They are not focused on one application
area, and the contributions of the field are more about general methodologies.
KDD methods are especially suitable for analytical problems in which thereKDD is useful but still

limited exist means for assessing the quality of the proposed solutions. However, very
often they become black-box methods in the hands of the end users (e.g., the
prostate cancer physicians) or the algorithms provide results that do not lead to
a solution to the problem, because they do not take into account relevant expert
knowledge.

In contrast, visualisation methods use background knowledge, creativity andLimitations of
visualisation methods intuition to solve the problem at hand. While these approaches often give

acceptable results for small datasets, they fail when the supplied data is too
large to be captured by a human analyst[66]. Figure 4.1 compares the KDD and
information visualisation processes.

Nowadays, a third approach has begun to emerge, i.e., the visual analyticsVisual analytics approach
is the third way approach, which brings the experts’ background knowledge back into the

analysis process, together with the ability to interact and steer the analysis
process.
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Figure 4.2: Haploview LD display[12] with recombination rate plotted above
(left) and haplotypes display (right)

4.1.1 Visual Analytics as a Combination of Automated and Visual
Analysis – Success Stories

There exist a number of successful application areas in which the visual
analytics approach has been used together with KDD methods. Four notable
examples are discussed; bioinformatics and climate change (mentioned already
in the motivation section), the pervasive problem of finding patterns in data, and
spatio-temporal data mining (discussed in Chapter 5).

Bioinformatics. Bioinformatics is one of the areas where KDD methods have
been used extensively in combination with visualisation methods. In fact,
bioinformatics is arguably one of the great successes in the field of compu-
tational data analysis – the combination of biology and KDD has produced
a whole new area of research. The multidisciplinary approach that combines
biology, medicine and visualisation with advanced KDD methods have resulted
to new scientific knowledge and has led to understanding and treatments for
serious diseases such as cancer. The fact that KDD methods and algorithms Ten out of the fifty

most-frequently cited
articles in the
Bioinformatics journal
propose visual analysis
tools or methods

are central in the bioinformatics field is recognised by the scientific community.
The importance of the combination of such methods with visualisation can be
concluded from the fact that, ten out of the fifty most-frequently cited articles
in the Bioinformatics journal, currently the leading reference in the field,
propose visual analysis tools or methods (see, for example, Figure 4.2, where an
interactive visual interface is used for computation and analysis of linkage dis-
equilibrium statistics and population haplotype patterns from primary genotype
data). As the complexity of research increases, more and more researchers and
companies are relying on visual analytics as an indispensable aid for decision
making in bioinformatics. Another example of this trend is the widely use
of BioConductor2 for computational biology and bioinformatics that provides
access to a large collection of KDD, machine learning and statistics methods
together with advanced visualisation techniques.

Climate change. KDD is becoming increasingly important for measuring the
impact of climate change. The massive volume of climate-related data gathered

2http://www.bioconductor.org/
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Figure 4.3: By means of a combination of an automatic pattern matching
algorithm and an interactive visual interface, the expert is able to
understand sea surface temperature changes over the past millions
of years and use this to help predict future changes[109]

from remote and in-situ sensors is increasing rapidly. This vast climate database
is augmented with proxy observations from the past and with data coming from
simulations of global or regional climate models. In order to gain predictiveVisual analytics for

predicting climate
extremes

insights on climate extremes and foresee events with potential impact, all
these spatio-temporal data sources must be integrated, mined and presented
in an understandable way. KDD methods can extract novel insights about
climate extremes and regional change, while geographical information systems
and multidimensional visualisation techniques can relate climate change and
extremes to societal and ecological impacts. To illustrate this process, Figure
4.3 shows the distribution of micro-fossil species at different sites of the world
through millions of years. These are used to reconstruct environmental features
of the past by means of expert-steered k-nearest neighbour prediction; the use of
linked parallel coordinate plots, maps and animations enables further analysis
of the model.

Pattern identification. Searching for patterns is one of the main goals in
KDD and it is applied to many varying domains such as medical, biological,
financial and linguistic. Novel, exploratory data analysis tools and adaptive
user interfaces have been developed by tailoring and combining existing KDDCombining KDD and

visualisation methods and visualisation methods. Variations of scatterplots, parallel coordinate
plots, dendograms, heatmaps and many other visualisation techniques are used
in combination with clustering, self organising maps, principal components
analysis and other pattern extraction algorithms using colour linking and/or
interactive brushing with excellent results. In the last five years, the success
of this integration has contributed significantly to the use of visual analyt-
ics.

Spatio-temporal data mining. The availability of large repositories of spatial
and spatio-temporal data has triggered the interest of the data mining commu-
nity to the opportunities presented with these new data resources. However,
this field presents new challenges and complexities: both the raw data (e.g.,
the traces of people moving in a city or flocks of animal migrating from one
continent to another), and the extracted pattern (e.g., the aggregated flow from
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one zone of a city to another), may be too complex to be interpreted effectively
by the analyst[79]. A new research field, identified by the European Project Combining visualisation

and data mining for
analysing mobility

GeoPKDD3[47], is emerging from the interaction of data mining technique with
visual analytics tools for spatio-temporal data. An example of this interaction
is presented in Andrienko et al.[6], where the knowledge extraction process is
driven by the analyst, enabling efficient management of large datasets through
stepwise refinement of the extracted model.

4.1.2 Is Industry Ready for Visual Analytics?

Generally, the use of visual analytics has been well received by industry. Several
companies have embraced this business model and are selling visual analytics
tools and/or offering consultancy services to different industries. Arguably, the
main reason to adopt this novel approach is that business users have witnessed
the success stories of data mining, but they need to understand its results. Few Techniques are required

to understand the
resulting KDD models

KDD models are easy to understand and techniques need to be developed to
explain or visualise existing ones. Furthermore, there is a need for techniques
to translate the user’s questions into the appropriate input for the data mining
algorithms. Industry representatives see the need for intuitive and interactive
KDD/visual analytics methods by which they can readily interact with the data
and the underlying KDD models.

Due to its generality, KDD can be used in most visual analytics scenarios. Some
good examples of its use are given below.

Marketing data. Data mining has appeared often in the media as an artificial
intelligence technique capable of extracting interesting patterns out of customer
activity, allowing effective marketing campaigns to launch new products and
acquire new customers (see, e.g., Xtract Ltd4). With the rapid development of
IT, exploring and analysing the vast volumes of commercial data is becoming
increasingly difficult. Visual analytics can help to deal with the flood of
information, since it provides a means of dealing with highly non-homogeneous
and noisy data and involves the user in the data mining process (see, e.g., Visual
Analytics Inc.5).

Process industry. The problem is that manufacturing systems are much
better at collecting data than they are at helping one understand it (see, e.g.,
Spotfire6). In this context, visual analytics provides a way of making sense
of the very large volume of data generated by factories related to quality
parameters, process trends, maintenance events, etc. Thus, visual analysis
can help solving problems, such as detecting anomalies and analysing their
causes that, in turn, will lead to the development of more efficient and reliable
processes.

Software industry. The complexity and size of industrial projects is currently
growing rapidly, and hence there is a clear need for tools that assist during

3http://www.geopkdd.eu/
4http://www.xtract.com/
5http://www.visualanalytics.com/
6http://spotfire.tibco.com/Solutions/Manufacturing-Analytics/
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the development, testing and deployment cycles. Currently, understanding the
evolution of software has become a crucial aspect in the software industry. In
the case of large software systems, gaining insight into the evolution of a project
is challenging. Retrieving, handling and understanding the data poses problems
that can only be solved by tightly coupling data mining and visualisation
techniques. Thus, visual analytics can be effectively applied to support decision
making in the software industry.

Pharmaceutical industry. The drug discovery process is very complex and
demanding and often requires a cooperative, interdisciplinary effort. Despite
the considerable methodological advances achieved through the years and the
huge resources devoted to this enterprise, the results are disappointing. The
recent completion of the human genome project has not only unearthed a
number of new possible drug targets but has also highlighted the need for
better tools and techniques for the discovery and improvement of new drug
candidates. The development of these new tools will benefit from a deeper
understanding of the drugs’ molecular targets as well as from more friendly and
efficient computational tools. With the flood of data across all aspects of the
pharmaceutical industry, visual analytics is emerging as a critical component of
knowledge discovery, development, and business[94].

4.2 State of the Art

The focus of the visual analytics community has been on interactive visual
representation and exploration of data. But, the aim of the KDD community
has focussed on developing computational methods that can be used to extract
knowledge from data. There is a general awareness of the need to integrate
visual analytics and KDD, but relatively few efforts have been made to address
this issue. In this section, we present an overview of research and commercial
systems in the following categories: statistical and mathematical tools, visually
supported tools and combined methods. At the end of this section, we
present several examples of KDD/visual analytics approaches from the fields
of bioinformatics and graph visualisation.

As we have seen, the objective of knowledge discovery and data mining is to
extract information from large datasets[55, 108]. This process is characterised by
a series of operations (i.e. data pre-processing, data mining, data cleaning) that
transform the data in various ways to obtain patterns and models that represent
the implicit information within the data. Usually, the pre-processing steps
produce a dataset in a suitable format for the data mining algorithms. The
post processing steps transform the output of the mining into a form that can
be understood by the analyst.

Data mining tasks can be divided into predictive tasks (e.g., classification,
regression) and descriptive tasks (clustering, pattern mining, association rule
discovery, etc.). In the former case, the data is analysed to build a globalData mining tasks are

classified as predictive or
descriptive

model, which is able to predict the value of target attributes based on the
observed values of the explanatory attributes. In descriptive tasks, the objective
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is to summarise the data using local patterns that describe the implicit rela-
tionship and characteristics of the data itself. However, as discussed earlier,
existing methods support limited user interaction and are mainly designed
for homogeneous data sources. Some attempts have been made to enhance
data mining with visualisation providing advanced interactive interfaces. A
survey of the state of the art of current and proposed solutions that facilitate
sense-making for interactive visual exploration of billion record datasets, is
provided in ’Extreme visualization’[99]. Several interactive tools for information
visualisation, designed for specific data types have been presented in the
literature. These include graph visualisation[1], time series interactive search[20]

and network visualisation[9].

We now give an overview of some research and commercial systems in the con-
text of data mining and visualisation, categorised as follows:

- Statistical and mathematical tools
- Specific algorithmic tools
- Visual analytics libraries
- Visual data mining tools
- Web tools and packages
- Scientific visualisation tools
- Combined methods
- Computational information design

Statistical and mathematical tools. Statistical analysis has a long history
of visualising the results as time series, bar charts, plots and histograms.
Examples of tools providing statistical and mathematical visualisation are R7,
Matlab8,Mathematica9 and SAS10 tools for statistical computing and graph-
ics.

Specific algorithmic tools. Algorithmic tools have been developed by the re-
search communities for a specific task or problem. Examples are Graphviz11(see
Figure 4.4), open source graph visualisation software, or Pajek12, which is more
focused on the analysis of social and complex network data by taking advantage
of network/graph visualisation.

Visual analytics libraries. One example, originally aimed at providing
expertise in data visualisation and visual design is BirdEye13, a community
project to advance the design and development of a comprehensive open source
information visualisation and visual analytics library.

Visual data mining tools. Visual data mining creates visualisations to reveal
hidden patterns from datasets. The need of new methods in data analysis has

7http://www.r-project.org/
8http://www.mathworks.com/
9http://www.wolfram.com/

10http://www.sas.com/technologies/bi/visualization/visualbi/index.html
11http://www.graphviz.org/
12http://vlado.fmf.uni-lj.si/pub/networks/pajek/
13http://code.google.com/p/birdeye/
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Figure 4.4: Radial layout graph visualisation made using Graphviz. A real-
world network containing 300 sites over 40 countries. The diagram
was made to trace network incidents and to support maintenance.
Used with permission of AT&T

launched the field. Several products are on the market; often focused on ’busi-
ness intelligence’ such as marketing, risk analysis, sales analyses and customer
relationship management. Some examples are:

KNIME14 is a modular data exploration platform that enables the user to
visually create data flows (or pipelines), selectively execute some or all analysis
steps, and later investigate the results through interactive views on data and
models.

Weka15 is a collection of machine learning algorithms for data mining tasks,
which allows the user to create pipelines in order to perform data pre-processing,
classification, regression, clustering, association rules, and visualisation. It is
open source code, developed in Java.

Similarly to Weka, RapidMiner16 is an environment for machine learning
and data mining tasks, which allows the user to create data flows, including
input and output, data pre-processing and visualisation. It also integrates
learning schemes and attribute evaluators from the Weka learning environ-
ment.

14http://www.knime.org/
15http://www.cs.waikato.ac.nz/ml/weka/
16http://rapid-i.com/
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Figure 4.5: VizTree: The top panel is the input time series. The bottom left
panel shows the subsequence tree for the time series. The top
right window shows a zoomed in region of the tree, and the bottom
window plots the actual subsequences when the user clicks on a
branch

Web tools and packages. An increasing number of tools are available online,
but user interaction becomes more complicated and difficult to model and
optimise, when used remotely. With these tools, users can create visualisations
using their own data. An example of an online social data analysis tool is
ManyEyes17, an IBM application for social data analysis.

Scientific visualisation tools. Scientific visualisation is the representation
of data graphically as a means to gain understanding and insight into the
data. It involves research in computer graphics, image processing, high
performance computing, and many other areas. Scientific visualisation tools
are often adopted for modelling complicated physical phenomenon. An
example in the field of natural science is Gravity waves18, where the Globus
Toolkit has been used to harness the power of multiple supercomputers and
simulate the gravitational effects of black-hole collisions. Other examples
come from geography (e.g., terrain rendering) and ecology (e.g., climate
visualisation).

Combined Methods. There have been some attempts to combine data mining
and visualisation. For example, some concentrate on the analysis of time
series by using tree visualisations and interactions (VizTree, see Figure 4.5),
or propose a combination of visual data mining and time series (Parallel
Bar Chart, see Figure 4.6), or combine KDD concepts and visualisations
(Statigrafix19, see Figure 4.7). However, each one lacks either effective
visualisation, automatic data mining or requires a strong expertise in the
application field.

17http://manyeyes.alphaworks.ibm.com
18http://www.anl.gov/Media_Center/logos20-2/globus01.htm
19http://statigrafix.com
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Figure 4.6: Parallel Bar Chart[30] visually represents each time-series in a bar
chart format where the X axis is associated with time (the axis on
the right), the Y axis with the value (height of a bar) of the series at
that time and the axis on the left identifies the different time-series,
ordered by date

Finally, in the bioinformatics and graph visualisation fields there are several ex-
amples of KDD/visual analytics approaches. For instance,

JUNG (Java Universal Network/Graph Framework20) is a software library that
provides a common and extensible language for the modelling, analysis, and
visualisation of data that can be represented as a graph or network. It is
written in Java and it includes implementations of a number of algorithms from
graph theory, data mining, and social network analysis, such as routines for
clustering, decomposition, optimisation, random graph generation, statistical
analysis, and calculation of network distances, flows, and importance mea-
sures.

HCE21 (Hierarchical Clustering Explorer) for interactive exploration of multidi-
mensional data. Genome researchers adopt cluster analysis to find meaningful
groups in microarray data. Some clustering algorithms, such as k-means,
require users to specify the number of clusters as an input, but users rarely
know the right number beforehand. Other clustering algorithms automatically
determine the number of clusters, but users may not be convinced of the
result since they had little or no control over the clustering process. To
avoid this dilemma, the Hierarchical Clustering Explorer (HCE, see Figure 4.8)
applies the hierarchical clustering algorithm without a predetermined number
of clusters, and then enables users to determine the natural grouping with
interactive visual feedback (dendrogram and colour mosaic) and dynamic query
controls.
20http://jung.sourceforge.net
21http://www.cs.umd.edu/hcil/hce/
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VA San Diego HS Emergency Department Crowding Patterns, Oct 2007
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Figure 4.7: Calendar-template data visualisation of datasets captured at the
visual analytics San Diego Health Service’s Emergency Dept in Oct
2007 (Source: Alan Calvitti, statigrafix.com)

BicOverlapper22 is a framework to support visual analysis of gene expression
by means of biclustering. In order to improve the visualisation of biclusters, a
visualisation technique (Overlapper) is proposed to simultaneously represent
all biclusters from one or more biclustering algorithms, based on a force-
directed layout. This visualisation technique is integrated in BicOverlap-
per, along with several other visualisation techniques and biclustering algo-
rithms.

Computational Information Design. Similarly to the previous category,
Computational Information Design has been suggested by Ben Fry from
the Massachusetts Institute of Technology23. In an attempt to gain better
understanding of data, fields such as information visualisation, data mining
and graphic design are employed, each solving an isolated part of the specific
problem, but failing in a broader sense: there are too many unsolved problems
in the visualisation of complex data.

4.3 Challenges

4.3.1 Introduction

The developers of visual analytics applications face several fundamental chal-
lenges when attempting to develop integrated iterative methodologies that
involve information gathering, data pre-processing, knowledge representation,
interaction and decision making. One of the main purposes of this chapter is
to establish the degree to which existing techniques and approaches can be
integrated, and, in a wider sense, how the human-computer integration might
be facilitated[14].
22http://vis.usal.es/bicoverlapper/
23http://benfry.com/phd/
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Figure 4.8: Hierarchical Clustering Explorer for interactive exploration of mul-
tidimensional data[97]

According to Thomas and Cook[111], the so-called ’Grand Challenges’ faced
by visual analytics can be grouped into five categories: analytical reasoning,
visual representations and interaction techniques, data representations and
transformations, production, presentation and dissemination, and moving re-
search into practice. The first category (analytical reasoning) refers to theThe five categories of

Grand Challenges reasoning frameworks by which users derive insights or discover knowledge to
support the decision making process. These frameworks provide the foundation
for applying specific transformations, visual techniques or other operations, on
the data. The second category (visual representations) covers all interactive
means, methods and techniques that enable visual representation of data. The
third category (data representations and transformations) refers more to the
specific ways that data is represented, as well as the operations upon data
(which might be noisy, incomplete, or uncertain). Representations refer to
the fundamental ’structure’ of the data within an application, usually non-
intuitive to users, but responsible for facilitating data transformations, calcula-
tions, etc. The fourth category (production, presentations and dissemination)In KDD, analytic

reasoning, and data
representations and
transformations are
highly relevant

refers to user activity and interaction. Finally, the fifth category (moving
research into practice) refers to the practical application of methods and
techniques.

In terms of KDD, the first (analytical reasoning) and third (data representations
and transformations) categories are highly relevant. Next we analyse in more
detail several specific technical challenges in both of these categories relating
to KDD.

4.3.2 Data Issues

While data types, formats and characteristics are a key part of the motivation
underlying visual analytics approaches, they also represent a key challenge
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to operational implementations. Here we focus specifically on data mining
issues. For visual analytics to be able to fulfil its true promise, we need
the capability to integrate both heterogeneous and large datasets. This in-
cludes:

- (qualitative) textual data,
- data stored in (distributed) databases,
- data received from sensors,
- spatial data such as satellite imagery,
- audio and video.

KDD approaches tend to focus more on specific types of (quantitative) data, KDD approaches tend to
focus on specific types of
quantitative data

however, approaches for other data types are emerging[93, 40]. There are several
levels of complication:

- Some of the data could be arriving in real-time, so that ways to manage this
(storage, management and interactive analysis and visualisation) are required.

- Some of the data will be of variable quality, therefore we need to know as
much as possible about the data itself.

- Data may be incomplete, so we need to know what is missing, as well as
having ways to handle or manage the missing data.

- Data may be of different (spatial) scales, and therefore require transforma-
tions/mappings to be compatible with other data.

The means by which data should be managed and distributed is addressed in
more detail in Chapter 3, and for spatio-temporal data in Chapter 5. However,
to support the data mining initiatives in visual analytics, we require methods
for data cleaning, integration, data fusion etc. If we are to achieve ’real
time’ analytics, then the cleaning and integration methods should be automated
and fast. These problems are non-trivial and significant developments are
required before data mining can be integrated into a visual analytics plat-
form.

A necessary feature of these developments will be the adoption of standards
across different visual analytics toolsets and software environments. These data Data standards or

metadata are requiredstandards24 do not just concern data formats. More fundamentally, we require
metadata, or documentation of the data itself: lineage/source(s), formats,
method of collection, accuracy and completeness in order to support data
mining approaches.

4.3.3 Visual Analytics Platforms

One of the main goals of KDD is pattern extraction. This can be applied in
many application domains, as discussed in the following section. Most of the
existing visual analytics related software provides some common functionality
(statistical analysis, graphing tools, algorithms, visualisation), but as noted in
the previous section, data needs to be represented in a format suitable for the
analysis algorithms.

24See for example http://www.iso.org/
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Functions such as linking and brushing, scatterplots and clustering are basic
functions, yet are missing from many software environments. A key reasonMost software is

developed for a specific
task

for this is that most software has developed out of the specific needs of a
particular discipline, and therefore is geared towards specific types of decision
making. As noted in Section 4.2, a variety of tools and environments exist
which address different aspects of visual analytics. Examples include KNIME25

and OECD explorer26, which are developed specifically for geographic data.
These are significantly different from business intelligence tools, which focus
specifically on marketing and management strategies and risk analysis, and
differ significantly from bioinformatics tools.

The fundamental challenge, given that we are likely to see ongoing development
of these heterogeneous toolsets, is to provide the functionality so that users can
easily switch between visual analytics tools and data sources. To achieve this,
data sources will have to be integrated directly using applications programming
interfaces (APIs). Clearly, building specific visualisation tools for every use
case is not a feasible solution. Generic tools are required that can be customised
with appropriate algorithms and visual tools.

Many of the commonly used data mining algorithms are already well-developed
and do not require expert users in order to be applied. For example, even a
novice user can use a clustering algorithm, provided it has adequate documenta-
tion. This chapter has identified a wide variety of emerging software platforms
both within, and closely related to visual analytics. Many of these have their
own implementation of various algorithms. It has also been noted that an
initial community repository for information visualisation and visual analytics
algorithms is already underway (BirdEye). In order to facilitate KDD and dataInterdisciplinary

initiatives are required mining approaches, cross-disciplinary initiatives are required. Not simply to
provide algorithms, but to inform the wider community (KDD, information
visualisation and visual analytics) about their functionality and requirements.
Cross-platform standards could also play an important role in this, in terms
of defining a core set of widely used algorithms, as well as frequently used
visualisation techniques.

One further issue is the provision of distributed collaboration between disci-
plinary experts. This has a major implication for visual analytics platform in
sharing very large datasets over the Internet. Further investigation is required
into the kinds of technologies that can facilitate this.

4.3.4 Towards Visually Controlled Data Mining

The current data mining methods support only limited user interaction. Also,Advanced KDD methods
require expertise existing KDD methods are not directly applicable to visual analytics sce-

narios. This is essentially because the more advanced KDD methods are
often non-intuitive, in that a significant degree of experience is required for
their successful application. As well as user expertise, many KDD methods

25http://www.knime.org
26http://www.oecd.org/gov/ regional/statisticsindicators/explorer
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require substantial processing time and therefore place significant demands on
computer hardware.

In complex domains, the models and patterns extracted by traditional KDD
approaches may also be difficult to interpret, and relevant information may be
hidden within large results sets. It is envisaged that visual analytics methods
may simplify the presentation and evaluation of the models extracted. These
issues should be addressed if KDD is to be able to make a significant contri-
bution to visual analytics (and vice-versa). Work is required on identifying and
implementing means by which this might occur.

In a review of visual analytics, information visualisation and data mining litera-
ture, Bertini and Lalanne[14] classify recent literature within these disciplines
along a ’continuum’ of approaches, ranging from pure data mining to pure
visualisation and propose new research questions and directions. Puolamäki Towards ’visually

controlled mining’et al.[91] identifies a new class of data mining methods, visually-controlled data
mining.

For a data mining method to be useful in visual analytics it should be:

1. Fast enough – sub-second response is needed for efficient interaction.
2. Parameters of the method should be representable and understandable using

visualisations.
3. Parameters should be adjustable by visual controls.

Efficient interaction represents a significant hurdle in bringing KDD to visual
analytics, as noted above. In terms of the second and third requirements, further
investigation into what types of ’visual controls’ are required to manage and
adjust the algorithms is required.

There are hardware, software, and algorithmic issues involved in developing
the kind of mixed-initiative approach identified above. From a hardware point Hardware and software

issues are still openof view, machine specifications should be able to handle the computations
adequately. The software should be as application-independent as possible,
perhaps following the plugin topology favoured by many open source research
tools. These algorithms must be both efficient and robust. One could conceive
of a repository for plugins to various existing and emerging platforms (similar
to BirdEye as noted above), maintained for quality control and ongoing
community development.

The research on visual analytics, using visualisation and interaction methods to
analyse large datasets, and data mining have evolved separately. However, at
the current time, communication and interaction between both research com-
munities has just started in the form of workshops under the umbrella of their
main international conferences (such as SIGKDD and VisWeek). The success
of these events has confirmed that there are significant benefits from bringing
these communities together. A challenge lies in establishing collaboration KDD and information

visualisation
communities should
collaborate more

between these research communities, so that we can focus on applications. This
requires that domain experts from the data mining/KDD, visual analytics and
information visualisation communities, collaborate on the specific ways that the
two approaches can complement one another.
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4.3.5 Research and Evaluation

It is possible to identify three general categories relating to research and
evaluation from the perspective of KDD and data mining. These relate to
evaluation, research development and collaboration.

The evaluation of visual analytics approaches is regarded as difficult. It requires
specific criteria on how to judge a visual analytics solution or application.
The evaluation also requires new measures. While significant criteria existEvaluation is difficult - it

is unclear what a good
solution is

in the separate fields which visual analytics seeks to draw together, it is
difficult to envisage how these might fit together in some unified way. For
example, in the discipline of visualisation, a number of techniques and criteria
exist for evaluation of results such as assessment of the effectiveness of the
result (through user evaluations). Similarly, it is relatively easy to judge
the outcome of traditional KDD approaches through validation of the results
with reference data. However, in terms of combined KDD/visual analytics
solutions, it is still unclear what a ’good’ solution or application should
look like. We therefore expect to see ongoing development of (design and
implementation) guidelines, to help identify a base upon which we can build
further.

In terms of research collaboration, significant technical challenges exist. Sev-
eral of these were identified above. The general question is “how willCollaboration requires

workflow sharing collaborative data mining/visual analytics approaches work?” They would
require facilities for transfer of data, but also of custom algorithms or even
better, entire data workflows in some way. Some collaborative approaches
are currently underway, but these are by no means well developed in terms
of the requirements of a mixed-initiative visually-controlled mining approach.
More work is required to investigate the possibilities of data, software, and
even full workflow-sharing approaches and their respective practical limita-
tions.

In terms of development of the research field itself, this brings about a
sociological and very practical question: how to get the referees to accept
visual analytics/KDD papers? Special issues are perhaps a temporary solution,
but ultimately, alongside the rapid development of software and integrated
solutions, we would expect to see several dedicated academic journals to
support the research discipline.

4.4 Opportunities

While the key issues identified in the previous section are significant barriers to
progress, several of these also represent major opportunities. Below we discuss
four general categories of these: the development of generic tools and methods,
regulation and quality control, visualisation of models, and linkage of KDD and
visualisation communities.

Firstly, generic components are needed in order to stimulate research. ThisNeed for a repository of
generic tools and methods obviously includes algorithms, i.e., methods, and software libraries (preferably
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open source for maximal spread). It is possible to envisage some kind
of ’repository’ for things like plugins and software libraries with associated
documentation to promote access to a range of research communities. It has
already been identified that here will need to be some kind of regulation and
quality control for this to develop in a controlled manner. The major opportunity
in this sense is to provide the guidelines and framework for these components
to develop.

In addition to the visualisation of the data we should move to visualisation
of models. For example, why are two points clustered together? If we Visualisation of models

could be usefulknow some groups of people and their social interaction network, what kind
of an interaction model would help to explain the data? The initial steps in
achieving this are relatively simple: just bring the basic methods to visuali-
sation of model spaces. Data mining models contain information about the
phenomena. As discussed earlier in this chapter, initial approaches are already
underway.

The final opportunity, already identified above, relates directly to the above
issue and involves collaboration between KDD and visualisation communities.
The two communities certainly share an awareness that their approaches Collaboration between

KDD and visualisation
communities should be
encouraged

have significant overlap. While also a cultural challenge, there are significant
opportunities for cross-pollination of approaches, methods and techniques.
Ways to encourage and stimulate this might be through for example expert
groups or mixed-initiative ’challenges’ at key research conferences. From the
review in Section 4.2, as well as the VAKD ’09 Workshop[91], it would appear
that we are close to a breakthrough.

4.5 Next Steps

Visual analytics is an emerging research field that combines the strengths of
information visualisation, knowledge discovery in databases, data analysis and
mining, data management and knowledge representation, human perception
and user interaction. In this report we discussed the scope of visual ana-
lytics and analysed several challenges and opportunities that stem from this
very promising field. Our investigation and analysis suggest that there is a
clear need for integration of visual analytics and knowledge discovery and
for building a community. The merging of the KDD and visual analytics
communities could be achieved by two main approaches: bottom-up and top-
down.

A bottom-up approach would include several dissemination activities, such as
workshops, conferences and journal special issues. The VAKD ’09 Workshop
on Visual Analytics and Knowledge Discovery, organised by us, was a great
success. The second VAKD workshop27 will be organised in Sydney in
conjunction with the 10th IEEE International Conference on Data Mining
(ICDM 2010). A series of VAKD workshops will promote the development
of novel visual analytics ideas and bring visual analytics research communities

27http://www.mpi-inf.mpg.de/conferences/VAKD10/
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closer. Further, we should organise several collaborative research projects that
would involve leading research groups.

Historically, challenges have been traditionally a good way to catalyse research.
In VAKD ’09 workshop, the authors were encouraged to address the tasks of
the IEEE VAST 2008 visual analytics challenge[50], which contain both visual
analytics and KDD angles in the performance evaluation. We should organise
KDD challenges in the spirit of visual analytics. For example, the evaluation
of a classification algorithm should not just be the classification accuracy but
should also involve several other factors, such as, user interaction, visualisation,
etc. It would be essential to include both visual analytics and KDD aspect in
the Grand Challenges stated in Section 4.3.1.

Knowledge discovery approach should be reconsidered and data mining pro-
cesses should evolve in the direction of visual analytics processes. As part of
this process, we should consider new performance evaluation measures, as it is
clear that we will need more than just algorithmic measures.

One major contribution would be to develop novel visual analytics approaches
that enable visualisation for both the data and the underlying model. So
far, standard visual analytics only allowed visualisation of the data. For this
purpose, several existing information visualisation techniques could be used and
further extended and tailored, with the help of data analysis methods, to produce
useful and usable data model representations.

Current data mining methods support limited user interaction. For a data
mining method to be optimal in a visual analytics application, it should be fast
(sub-second response is needed for efficient interaction) and the parameters of
the method should be understandable and adjustable by visual controls. By
using visual interaction, the visually-controlled data mining process will be
more efficient than by ’blindly’ applying some data mining method, or by just
interactively visualising data.

Another challenge for visual analytics is scalability of algorithms and hetero-
geneous data. Special emphasis should be given to methods that scale well and
are applicable for indexing, accessing, analysing and visualising huge datasets.
At the same time, a new trend in the area of data mining is being able to handle
and combine data from large and possibly conflicting sources. Developing
visual analytics algorithms that can handle this information overload and
ambiguity efficiently would be another major contribution to the visual analytics
community.

It is important to consider the application aspect of visual analytics. As also
mentioned by Keim et al.[66], for the advance of visual analytics, several appli-
cation challenges should be mastered including physics, astronomy, business,
security, economics, biology and health, engineering and mechanics and GIS.
Visual analytics applies to a wide range of different application fields and
for our part we should encourage and enforce interdisciplinary collaboration.
All the aforementioned communities should be investigated extensively and
visual analytics algorithms should be developed that are tailored to their
needs.




