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Abstract

Electroencephalography (EEG) coherence provides a quantitative measure of functional brain connectivity which is calculated
between pairs of signals as a function of frequency. Withouthypotheses, traditional coherence analysis would be cumbersome for
high-density EEG which employs a large number of electrodes. One problem is to find the most relevant regions and coherences
between those regions in individuals and groups. Therefore, we previously developed a data-driven approach for individual as
well as group analyses of high-density EEG coherence. Its data-driven regions of interest (ROIs) are referred to as functional
units (FUs) and are defined as spatially connected sets of electrodes that record pairwise significantly coherent signals. Here, we
apply our data-driven approach to a case study of mental fatigue. We show that our approach overcomes the severe limitations
of conventional hypothesis-driven methods which depend onprevious investigations and leads to a selection of coherences of
interest taking full advantage of the recordings under investigation. The presented visualization of (group) FU maps provides a
very economical data summary of extensive experimental results, which otherwise would be very difficult and time-consuming
to assess. Our approach leads to an FU selection which may serve as a basis for subsequent conventional quantitative analysis;
thus it complements rather than replaces the hypothesis-driven approach.
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1 Introduction
A functional relationship between different brain re-

gions is generally associated with synchronous electri-
cal activity in these regions (Varela et al., 2001). Higher-
level cognitive mechanisms are associated with activ-
ity at lower frequencies and more global synchroniza-
tion; lower-level mechanisms are associated with activ-
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ity at higher frequencies and more local synchroniza-
tion (Nunez et al., 1997; von Stein and Sarnthein, 2000).
EEG coherence between signals recorded from pairs of
electrodes as a function of frequency might be used as a
quantitative measure for this synchrony (Halliday et al.,
1995).

EEG coherence is usually visualized as a two-
dimensional graph layout. Vertices (drawn as dots)
represent electrodes and edges (drawn as lines between
dots) represent significant coherences between elec-
trode signals. For high-density EEG, this layout may
suffer from a large number of overlapping edges, result-
ing in visual clutter (Kamiński et al., 1997; Stein et al.,
1999). Regarding the analysis of high-density EEG
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coherence, one problem is to find the most relevant
regions (groups of electrodes) and the most relevant
coherences between those regions. Another problem is
to compare coherences of interest across groups.

One common approach for coherence analysis is the
data-driven approach. This method does not provide any
spatial information; it assigns a quantity to a coherence
graph as a whole. Popular examples of such quantities
are cluster index (level of clustering) and characteristic
path length (average path length) (Achard et al., 2006;
Salvador et al., 2005; Sporns, 2002; Watts and Strogatz,
1998). A graph with a high cluster index in combination
with a low characteristic path length is said to reflect
small-world properties. Although a high cluster index is
related to a global organization of local units (i.e., clus-
ters, which may here be interpreted as EEG sources), it
does not provide information on the size or number of
those units (Sporns, 2002), nor on their location. The
other quantities do not provide this information either.

Another common approach for EEG coherence anal-
ysis is the hypothesis-driven approach. This usually
makes a regular subselection of the available coher-
ences (Maurits et al., 2006), because coherence analysis
of all electrode pairs would be cumbersome for high-
density EEG. A major drawback of this approach is that
the majority of the coherences is ignored.

We earlier presented a method for data-driven region
of interest (ROI) detection taking into account spatial
properties (ten Caat et al., 2007c,d,a). The data-driven
ROIs were referred to asfunctional units(FUs) and
were defined as spatially connected sets of electrodes
recording pairwise significantly coherent signals. For
individual datasets, FUs are displayed in a so-calledFU
mapwhich preserves electrode locations. An FU map
visualizes the size and location of all FUs, and connects
FUs if the average coherence between them exceeds a
threshold (ten Caat et al., 2007c,d,a).

Because there is much variation between individ-
ual FU maps, we additionally proposed two types of
group analysis(ten Caat et al., 2007a). First, thegroup
mean coherence map, which preserves dominant fea-
tures from a collection of individual FU maps. Second,
the group FU size map, which visualizes the average
FU size per electrode across a collection of individual
FU maps.

In this paper, our data-driven method for individual
and group coherence analysis is applied in a mental
fatigue study. We indicate how the data-driven method
leads to an FU selection, which may serve as a basis
for subsequent conventional quantitative analysis. The
latter will not be discussed here.
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Fig. 1.Voronoi diagram of the electrode positions. To each electrode
a ‘Voronoi cell’ is associated, consisting of all points that are nearest
to that electrode. Electrode labels are shown in corresponding cells
(top view of the head, nose at the top).

2 Methods
2.1 Participants and Task

Brain responses were recorded from a group of 5
healthy participants (3 women) between 19 and 24 years
of age, using an EEG cap with 59 scalp electrodes
(Fig. 1). A task switching paradigm (Lorist et al., 2000)
was used, which allows to study the effect of mental
fatigue on cognitive control processes involved in the
planning and preparation for future actions (Lorist et al.,
2000). Mental fatigue refers to the effects that people
may experience after or during prolonged periods of
demanding cognitive activity and was induced here by
two hours of continuous task performance, that is by
time on task (Lorist et al., 2000, 2005). During task ex-
ecution subjects were facing a color monitor on which
a square (4 × 4 cm) subdivided into four equal quad-
rants was displayed. Stimuli were red or blue letters,
randomly chosen from the set{A, E, O, U, G, K, M,
R}, which were presented in the center of one of the
quadrants in a clockwise order, one by one.

Participants were instructed to make either a left or
right hand response on each trial by pressing a response
button as quickly and accurately as possible. They re-
sponded (left/right) to the color (red/blue) of the stimu-
lus if it was presented in one of the two upper quadrants,
and to letter identity (vowel/consonant) for one of the
two lower quadrants. Thus, subjects switched between
the color and letter tasks on every second trial. There-
fore, responses to stimuli are so-called switch trials for
the upper left and lower right quadrants, and repetition
trials for the upper right and lower left quadrants. The
time between the response and the next stimulus was
randomly chosen to be 150, 600, 1500, or 2400 ms.

The aim of our data-driven approach is to indicate
ROIs and coherences of interest between those ROIs
when no strong hypotheses can be formulated based on
existing evidence. For simplicity, we here restrict the
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analysis to the condition in which subjects have ample
time to prepare for a task switch (i.e., 600 ms response-
stimulus interval). The switch task was performed con-
tinuously for 120 minutes, a period which was divided
into six blocks of 20 minutes for subsequent analy-
sis. Because effects of mental fatigue are more pro-
nounced in conditions in which relatively high demands
are placed on cognitive control processes, analysis was
further restricted to switch trials only (Lorist et al.,
2000). To examine the effects of mental fatigue, which
increases with time on task, we compared responses
from the first and the last 20 minute block (blocks 1
and 6). Responses where the subject gave an incorrect
answer were disregarded.

2.2 EEG Coherence
As a result of volume conduction (Lachaux et al.,

1999), multiple electrodes can record a signal from
a single source in the brain. Therefore, nearby elec-
trodes usually record similar signals. However, because
sources of activity at different locations may be syn-
chronous, electrodes far apart can also record similar
signals. A measure for this synchrony is coherence, cal-
culated between pairs of signals as a function of fre-
quency. The coherencecλ as a function of frequencyλ
for two continuous time signalsx andy is defined as
the absolute square of the cross-spectrumfxy normal-
ized by the autospectrafxx and fyy (Halliday et al.,
1995), having values in the interval[0, 1]: cλ(x, y) =

|fxy(λ)|2

fxx(λ)fyy(λ) . To calculate the coherence for an event-
related potential (ERP) withL repetitive stimuli, the
EEG data can be segmented intoL segments. A signif-
icance thresholdφ for the estimated coherence is then
given by (Halliday et al., 1995)

φ = 1 − p1/(L−1), (1)

wherep is a probability value associated with a confi-
dence levelα (p = 1 − α).

The average number of correct responses for the
different blocks was around 65, but with a rather large
inter-subject variation. Therefore, brain responses for
the first 40 trials with a correct response were se-
lected (for each block and each subject at least 40
correct responses were available). Disjoint segments
([−0.1, 0.88] s around the stimulus) were used for
further analysis, consisting of responses for 20 trials
at each switch. We used an average reference which
is suitable for coherence analysis of high-density
EEG (Nunez et al., 1997; Maurits et al., 2006), applied
a high-pass filter (0.16 Hz) and a notch filter (50 Hz),
and resampled from 500 Hz to 512 Hz (BrainVision

Analyzer 1.05, Brain Products GmbH). Then data were
transferred to EEGLAB (Delorme and Makeig, 2004),
running under Matlab (The MathWorks). A procedure
from Neurospec was adopted to compute the coherence
(www.neurospec.org), using a custom-made script
to compute coherences between all 1711 pairs of elec-
trode signals. We calculated coherence within the fol-
lowing EEG frequency bands: delta (1-3 Hz), theta (4-7
Hz), alpha (8-12 Hz), beta (13-23 Hz), lower gamma
(24-35 Hz), and higher gamma (36-70 Hz). Since con-
ductive gel might accidentally connect two adjacent
electrodes and thereby produce very high coherences,
coherences higher than 0.99 were ignored between sig-
nals corresponding to two neighboring electrodes. The
corresponding coherence threshold forp = 0.01 and
N = 40 segments isφ = 1 − 0.011/(40−1) ≈ 0.11.

2.3 Individual Analysis: Functional Unit
(FU) Map

The data for individual dataset analysis are repre-
sented by acoherence graphwith vertices representing
electrodes. Coherences above the significance thresh-
old (Eqn. 1) are represented by edges, coherences be-
low the threshold are ignored. To determine spatial rela-
tionships between electrodes, a Voronoi diagram is em-
ployed which partitions the plane into regions of points
with the same nearest electrode (Fig. 1). The area en-
closed by the boundaries of a region is referred to as
(Voronoi) cell. We call two cells spatially connected if
they have a boundary in common.

Because multiple electrodes can record a signal from
a single source, a spatially connected set of electrodes
recording similar signals is considered as a data-driven
ROI, referred to as functional unit (FU). More pre-
cisely, an FU is represented in the EEG coherence graph
by a set of spatially connected vertices which form a
‘clique’, meaning that the coherence between any pair
of electrodes in an FU exceeds the significance thresh-
old (ten Caat et al., 2007c,a). FU detection is motivated
by the assumption that larger FUs correspond to stronger
source signals and are therefore more interesting.

Earlier we developed three FU detection methods.
One is a maximal clique based (MCB) method which
detects FUs which are as large as possible (ten Caat
et al., 2007c,a). Its algorithm computes the correct FUs
according to the maximal clique definition, but is very
time-consuming. Therefore we developed two alterna-
tive approaches. The first is a watershed-based (WB)
method which approximates FUs in a greedy way and
is faster (ten Caat et al., 2007d). The WB method, orig-
inally developed to segment images into objects, was
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adapted to cluster electrodes into subsets which resem-
ble cliques. Finally, we introduced an improved water-
shed based (IWB) method which merges neighboring
FUs if their union is a clique in the coherence graph (ten
Caat et al., 2007a). The IWB method is used here, be-
cause it is much faster than the MCB method, and gives
a better FU approximation than the WB method (ten
Caat et al., 2007a).

Given the FUs, theinter-FU coherencec′λ at fre-
quencyλ between two Fus,W1 andW2, is defined as
the sum of the coherence values between one vertex in
W1 and the other vertex inW2, scaled by the maximal
number of edges betweenW1 andW2 (ten Caat et al.,
2007c):

c′λ(W1, W2) =

∑
i,j{cλ(vi, vj) | vi ∈ W1, vj ∈ W2}

|W1| · |W2|
.(2)

Here,|Wi| indicates the number of vertices inWi. Note
that coherences betweenany pair of vertices are taken
into account, including those below the threshold.

An FU mapvisualizes each FU as a set of cells with
identical gray value, with different gray values for adja-
cent FUs (e.g., Fig. 2). For visualization, a line is drawn
between FU centers if the corresponding inter-FU co-
herence exceeds a threshold. We consistently choose
this threshold to be equal to the significance threshold
(Eqn. 1), as we already used this threshold to determine
the coherence graph. Because larger FUs are considered
to be more interesting (ten Caat et al., 2007a), only FUs
of at least 4 cells are considered.

2.4 Group Analyses: Group Mean Coher-
ence Map and Group FU Size Map

FU maps differ from individual to individual, making
group analysis difficult. For this reason we previously
introduced two group maps for data-driven group anal-
ysis (ten Caat et al., 2007a).

First, a group mean coherence graphwas defined
as the graph containing the mean coherence for every
electrode pair computed across a group (ten Caat et al.,
2007a). To obtain a data-driven coherence visualization
for a group, only the edges with a value exceeding the
coherence threshold (Eqn. 1) are maintained. Next, an
FU map, referred to asgroup mean coherence map, is
created for this graph.

Second, agroup FU size mapvisualizes the average
FU size for every electrode across a group, based on
the individual FU maps (ten Caat et al., 2007a). The
average FU sizes of an electrodev is computed as

s(v) =
∑

j∈all datasets

|FUj(v)|

#datasets
,

with |FUj(v)| the size of the FU containingv for data-
set j. The values for an electrode is mapped to the
gray value of its corresponding cell, with lighter gray
for higher average FU sizes, similar to a (gray scale) to-
pographic map (ten Caat et al., 2007b). Consequently,
a light cell in an FU size map indicates that the corre-
sponding electrode is on average part of large FUs and
is therefore more interesting. (Recall that, on the con-
trary, white cells in FU maps and group mean coherence
maps are considered to be the least interesting, because
they are not part of sufficiently large FUs.)

To summarize, as a result of the way in which it is
calculated, the group mean coherence map displays co-
herences (and the involved FUs) with a higher mean
value. Because this FU map is calculated based on aver-
age coherence values between electrode pairs, both very
high coherences in a few subjects and coherences which
are on average high in many subjects can result in FUs
and coherences in the group mean coherence map. The
group FU size map emphasizes those electrodes which
are often part of a large FU in the individual subjects. It
indicates where on average the larger FUs are located.

3 Results
For all results, we setp = 0.01, corresponding to a

coherence thresholdφ ≈ 0.11.

3.1 Individual Analysis: FU Map
Individual FU maps for all participants were cre-

ated for blocks 1 (non-fatigued, Fig. 2) and 6 (fatigued,
Fig. 3). First, we comment on the general interpretation
of FU maps before describing the FU maps for this par-
ticular case study. Cells within one FU correspond to
electrodes whose signals are all (pairwise) significantly
coherent. Thus, if one FU covers an area including left
and right frontal electrodes (e.g., Fig. 2, participant 1,
8-12 Hz), thenall coherences between electrodes in the
left and right frontal area are significant. Alternatively,
if there are two separate left and right frontal FUs and
they are connected by a line (e.g., Fig. 2, participant 1,
13-23 Hz), then theaverageof all coherences between
one electrode in the left and the other electrode in the
right frontal FU is significant.

Within a participant, two FU maps from separate
blocks are usually highly similar regarding FU loca-
tions and connections between FUs. On the contrary,
differences between participants are found to be large.
Considering the FU maps per participant, FUs are gen-
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Freq Participants

(Hz) 1 2 3 4 5

1-3

1 FU(s); 0 sign. conn(s).

5

1 FU(s); 0 sign. conn(s).

1

6 FU(s); 9 sign. conn(s).

1

4
5

6

7 8

3 FU(s); 3 sign. conn(s).

2

4

5

1 FU(s); 0 sign. conn(s).

3

4-7

1 FU(s); 0 sign. conn(s).

1

1 FU(s); 0 sign. conn(s).

1

7 FU(s); 11 sign. conn(s).
1

2
3

6
7

9

10

5 FU(s); 7 sign. conn(s).

2 4

5

6

8

4 FU(s); 3 sign. conn(s).

12

5

7

8-12

2 FU(s); 1 sign. conn(s).

3

6

3 FU(s); 3 sign. conn(s).

1

23

5 FU(s); 1 sign. conn(s).

1

5

6

7

8

2 FU(s); 1 sign. conn(s).

2 4

4 FU(s); 3 sign. conn(s).

12

3

4

13-23

4 FU(s); 6 sign. conn(s).

23

4
6

5 FU(s); 9 sign. conn(s).

12

4

5 7

3 FU(s); 0 sign. conn(s).

5
6

7

3 FU(s); 0 sign. conn(s).

14

5

4 FU(s); 1 sign. conn(s).

1 3

4
5

24-35

5 FU(s); 6 sign. conn(s).

1

2

3

5

6

2 FU(s); 1 sign. conn(s).

1 3

3 FU(s); 1 sign. conn(s).

56

7

2 FU(s); 0 sign. conn(s).

13

4 FU(s); 1 sign. conn(s).

1 3

45

36-70

5 FU(s); 4 sign. conn(s).

12

3

4

6

2 FU(s); 0 sign. conn(s).

1 2

5 FU(s); 1 sign. conn(s).

24

56

7

1 FU(s); 0 sign. conn(s).

1

3 FU(s); 2 sign. conn(s).

1 2

4

 

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 2. Individual FU maps, block 1 (non-fatigued), for each partic-
ipant (numbered 1 to 5), withp = 0.01 and |FU| ≥ 4. Each FU is
visualized as a set of cells with identical gray value, with different
gray values for adjacent FUs. White cells are part of FUs witha
size smaller than 4. A line connects FUs if the inter-FU coherence
exceeds the significance threshold, with its color depending on the
value (see color bar, with minimum corresponding to the coherence
thresholdφ ≈ 0.11 for p = 0.01; the color bar is the same for all
FU maps).

erally largest for the lowest frequencies (both in blocks
1 and 6). Simultaneously, the total number of electrodes
in FUs decreases for increasing frequencies in the range
1-35 Hz. Above 35 Hz, this number does not continue
to decrease. Further, the number of significant longer-
distance coherences (either within one large FU, or be-
tween two smaller FUs) also decreases with increasing
frequency.

Overall, the coherence between frontal FUs is sig-
nificant in the majority of the FU maps. Left and right
parieto-occipital FUs, sometimes part of one larger FU,
occur in most cases. If frontal FUs and lateral parieto-
occipital FUs coexist, then the coherence between those
FUs is usually significant and often includes interhemi-
spheric coherences. Further, left and right centroparietal
FUs occur regularly. Centrally located FUs are found
occasionally.

In summary, differences between participants are
generally larger than differences within participants
between blocks 1 and 6. Lower frequencies show a

Freq Participants

(Hz) 1 2 3 4 5

1-3

1 FU(s); 0 sign. conn(s).

3

2 FU(s); 1 sign. conn(s).

1

2

4 FU(s); 4 sign. conn(s).

2

5

7
8

4 FU(s); 4 sign. conn(s).

2

34

5

4 FU(s); 6 sign. conn(s).

1

4

5
6

4-7

1 FU(s); 0 sign. conn(s).

1

3 FU(s); 3 sign. conn(s).

2 3

6

6 FU(s); 9 sign. conn(s).

2
3
4

5

8

9

4 FU(s); 3 sign. conn(s).

1 2

3

4

2 FU(s); 1 sign. conn(s).

2

5

8-12

3 FU(s); 3 sign. conn(s).

23

6

5 FU(s); 10 sign. conn(s).

1

3 4

5 6

5 FU(s); 5 sign. conn(s).
1

2
5

8

9

4 FU(s); 2 sign. conn(s).

1 2

4

6

5 FU(s); 5 sign. conn(s).

1 2

3

4 5

13-23

5 FU(s); 10 sign. conn(s).

1

2
3

5 6

5 FU(s); 7 sign. conn(s).

1 2

4

5 7

4 FU(s); 1 sign. conn(s).

1

5

6

7

2 FU(s); 0 sign. conn(s).

1 2

5 FU(s); 2 sign. conn(s).

1
2 3

45

24-35

6 FU(s); 6 sign. conn(s).

1

2

3

5

6 7

2 FU(s); 1 sign. conn(s).

1 2

4 FU(s); 2 sign. conn(s).

3

4

67

4 FU(s); 1 sign. conn(s).

1
2

4

5

4 FU(s); 3 sign. conn(s).

1 2

4 5

36-70

5 FU(s); 1 sign. conn(s).

12

3

4

6

2 FU(s); 0 sign. conn(s).

1 2

4 FU(s); 1 sign. conn(s).

2

4
5

6

3 FU(s); 1 sign. conn(s).

12

3

3 FU(s); 3 sign. conn(s).

2 3

4

 

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 3. Individual FU maps, block 6 (fatigued). Same parameters as
in Fig. 2.

more global synchronization, having larger FUs and a
larger number of longer-distance coherences between
FUs. For higher frequencies, decreasing FU sizes and
a reduction of longer-distance coherences indicate a
more local synchronization.

3.2 Group Analyses: Group Mean Coher-
ence Map and Group FU Size Map

The coherence data for block 1 (non-fatigued partic-
ipants) is put in one group, and for block 6 (the same,
fatigued, participants) in another group.

3.2.1 Group Mean Coherence Map

Group mean coherence maps (Fig. 4) were created
for block 1 (non-fatigued) and block 6 (fatigued). First,
we comment on correspondences between group mean
coherence maps and the individual FU maps, and cor-
respondences within the group mean coherence maps
between blocks 1 and 6.

As differences within participants are small between
blocks 1 and 6, differences in the group mean coher-
ence maps are also small between these two blocks. The
largest FUs occur generally for the lowest frequencies
(for both the non-fatigued and the fatigued condition).
The number of electrodes which are part of an FU and
the number of significant longer-distance coherences
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Freq. Switch trials

(Hz) Block 1 Block 6

1-3

1 FU(s); 0 sign. conn(s).

2

1 FU(s); 0 sign. conn(s).

3

4-7

1 FU(s); 0 sign. conn(s).

4

2 FU(s); 1 sign. conn(s).

1

2

8-12

6 FU(s); 10 sign. conn(s).

12

4

5

6

8

5 FU(s); 6 sign. conn(s).

1 2

4
5

6

13-23

5 FU(s); 3 sign. conn(s).

14

5

67

5 FU(s); 4 sign. conn(s).

12

4

5

6

24-35

5 FU(s); 3 sign. conn(s).

1 2

56

7

4 FU(s); 0 sign. conn(s).

12

46

36-70

3 FU(s); 0 sign. conn(s).

1 2

4

4 FU(s); 3 sign. conn(s).

1 2

4

6

 

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 4. Group mean coherence maps for block 1 (non-fatigued, left)
and block 6 (fatigued, right), withp = 0.01 and |FU| ≥ 4. The line
color depends on the inter-FU coherence (see color bar, bottom right,
with minimum corresponding to the coherence thresholdφ ≈ 0.11;
the color bar is the same for all FU maps). Above each group mean
coherence map, the number of FUs and the number of connecting
lines between FUs are displayed.

(either within one large FU, or between two smaller
FUs) both decrease with increasing frequency. Further,
frontal FUs occur for both blocks 1 and 6 in the 1-12 Hz
range. For higher frequencies, frontal FUs are smaller
(or absent). As most individual FU maps have lateral
parieto-occipital FUs, every group mean coherence map
also has such FUs. Significant anterior-posterior coher-
ences (between frontal and lateral parieto-occipital FUs)
exist within one FU or between two FUs in the 1-23 Hz
range for blocks 1 and 6.

Apparent differences in the group mean coherence
maps between blocks 1 and 6 occur in the two highest
frequency bands (24-35 and 36-70 Hz), with anterior-
posterior connections present in one block but absent
in the other. Those connections involve FUs with a size
just above the threshold (four cells). Other differences,
between individual FU maps and group mean coher-
ence maps, involve central FUs, which are present in
block 1 for 8-12 Hz and in block 6 for 8-23 Hz in the
group mean coherence maps. Nevertheless, they are not
present in the majority of the individual FU maps for

Freq. Switch trials

(Hz) Block 1 Block 6

1-3

0

5

10

15

20

25

30

0

5

10

15

20

25

30

4-7

0

5

10

15

20

0

5

10

15

20

8-12

0

2

4

6

8

10

0

2

4

6

8

10

13-23
1

2

3

4

5

1

2

3

4

5

24-35
1

2

3

4

5

1

2

3

4

5

36-70

0

1

2

3
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Fig. 5. Group FU size maps for block 1 (non-fatigued, left) and
block 6 (fatigued, right). Same parameters as in Fig. 4. The gray
scale range is adapted per frequency band (see right bars, with
maximum equal to the maximum average FU size). A lighter cell
indicates that the corresponding electrode is on average part of a
larger FU.

the corresponding frequency bands and blocks. How-
ever, there is no significant coherence between a central
FU and any other FU.

3.2.2 Group FU Size Map

Group FU size maps were created for all participants
for block 1 and block 6 per frequency band (Fig. 5).
Confirming the picture of the individual FU maps and
the group mean coherence maps, the maximum average
FU size per electrode (cf., ‘color’ bar) decreases with
increasing frequency for both blocks 1 and 6 in the
frequency range 1-23 Hz; for higher frequencies, the
maximum average FU size does not vary much. The
maximum average FU size also does not vary much
between the two blocks, per frequency band.

The main difference between blocks 1 and 6 occurs
for 1-3 Hz. In this frequency band, the highest average
FU sizes occur in both anterior and posterior areas for
block 1, and in a posterior area for block 6. Further,
there are no clear differences between blocks 1 and 6 for
higher frequencies. Large FUs are located for 4-7 Hz in
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frontal and parieto-occipital areas, for 8-12 Hz in frontal
areas, and for 13-70 Hz in left and right parieto-occipital
areas. The smallest FUs occur for blocks 1 and 6 in
similar areas. For 1-7 Hz, the smallest FUs appear in
lateral centro-parietal areas. For higher frequencies, the
smallest FUs are found in central, centroparietal, and
occipital areas. Temporal FUs are generally small.

In summary, for a subsequent quantitative analysis,
based on the above data-driven FU-map visualizations,
we suggest to explore power for and coherences be-
tween mid-anterior (AFz or Fz), bilateral frontal (F5
and F6) and bilateral posterior (PO7 and PO8) electrode
locations. Particular attention should be paid to coher-
ences between anterior and posterior contralateral elec-
trodes (e.g. F5-PO8). Frequency bands of interest are
1-3, 4-7 and 8-12 Hz, in particular.

4 Discussion and Conclu-
sions

Our data-driven method for high-density EEG coher-
ence analysis based on functional units (FUs) was ap-
plied to a case study for which no existing evidence was
available to formulate strong hypotheses. In this study,
a prolonged switching task was used to induce men-
tal fatigue. We used our approach to suggest electrode
pairs and frequency bands of interest for later quantita-
tive power and coherence analysis of this fatiguing task.

Generally speaking, in line with known EEG proper-
ties (Nunez et al., 1997; von Stein and Sarnthein, 2000),
lower frequencies were associated with a more global
synchronization and higher frequencies with a more lo-
cal one. Accordingly, both the individual FU maps and
the group mean coherence maps had larger FUs and
more longer-distance inter-FU coherences for lower fre-
quencies. Further, smaller FU sizes and a reduction of
longer-distance coherences occurred for higher frequen-
cies. FU map differences were generally large between
participants, but small between the non-fatigued and
fatigued conditions. These large inter-individual differ-
ences are not a property of our analysis, but probably
of the underlying data. The data-driven approach we
take likely makes these differences more clear than a
hypothesis-driven approach in which certain pairs of
electrodes are selected beforehand, coherences are cal-
culated and a statistical analysis is applied straightfor-
wardly to assess differences between groups. Improved
insight in inter-individual differences and similaritiesin
coherence may therefore be considered an additional
advantage of our approach.

Common features of individual FU maps were gen-

erally preserved in the group mean coherence maps.
Differences between the non-fatigued and fatigued
condition appeared in the group FU size maps for
the lowest frequency band (1-3 Hz), with the largest
FUs located both anteriorly and posteriorly for the
non-fatigued group, and posteriorly for the fatigued
group. Because mental fatigue is supposed to affect
higher-level cognitive processes which are associated
with lower EEG frequencies, this may explain why
the largest difference between the non-fatigued and
fatigued group occurs in the lowest EEG frequency
band. Therefore, for subsequent quantitative power and
coherence analysis, our group analysis suggests to take
anterior and posterior electrodes into account and focus
on low frequency bands.

In summary, our method thus specifies the frequency
band(s) of interest and intrahemispheric, interhemi-
spheric, and homologous coherences for subsequent
quantitative analysis. Additionally, interhemispheric
coherences between (left/right) anterior and (right/left)
posterior areas were suggested, which have so far not
been considered in hypothesis-driven approaches. Our
data-driven method suggests that coherences between
these electrode pairs may be particularly interesting to
detect differences between fatigued and non-fatigued
conditions during execution of a cognitive switching
task.

To conclude, the presented data-driven method for
high-density EEG coherence analysis, employing FU
maps and two types of group maps, can be applied
to situations for which no strong hypotheses can be
formulated based on existing evidence. It overcomes
the severe limitations of conventional hypothesis-driven
methods which depend on previous measurements and
leads to a selection of coherences which takes full ad-
vantage of the actual measurement. Our method distin-
guishes between local coherence (within an FU) and
global coherence (between FUs) and results are in line
with common EEG knowledge. Our approach can be
applied to any coherence data set, but is particularly
suited for datasets containing so many electrodes that an
exhaustive analysis which considers all possible elec-
trode pairs is no longer feasible (i.e.,> 20 electrodes,
which already leads to 190 possible pairs). Previously,
we showed that the analysis is very fast and takes ap-
proximately 0.05 seconds for 128 electrodes (ten Caat
et al., 2007a), in a study on the effects of ageing on
cognitive task performance. Altogether, our visualiza-
tion of (group) FU maps provides a very economical
data summary of a very extensive set of experimen-
tal results, which otherwise would be very difficult and
time-consuming to assess and which can be used as a
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guideline for further quantitative analysis.
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